A Gold-Catalyzed Domino Process to the Steroid Framework

Dirk Hildebrandt and Gerald Dyker*
/lp;\&-5q;1Fakultät für Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
gerald.dyker@rub.de
Received March 20, 2006

The facile formation of the B and C ring of rac-desoxyequilenin and of a chrysenone derivative in just one preparative step is demonstrated, applying a gold-catalyzed domino process, which involves a benzopyrylium cation as the key intermediate and an intramolecular $[3+2]$ cycloaddition as the key step.

Introduction

Gold as precious metal is known for being rather inert, a fact that might have somewhat hampered the development of gold catalysts. This has dramatically changed in recent years, and meanwhile it is clearly justified to claim that an eldorado for homogeneous catalysis has been found: ${ }^{1}$ gold salts are now established as highly active catalysts, especially as soft and carbophilic Lewis acids. We became interested in a domino process, which transforms o-alkynyl-substituted aromatic aldehydes and ketones to annulated ring systems via intermediary benzopyrylium cations, featuring a fascinating 1,5-migration of the carbonyl oxygen. Initially found to proceed under Brønsted acid catalysis, ${ }^{2}$ this process became broadly applicable under the moderate reaction conditions with gold, platinum, and copper salts as catalysts. ${ }^{3}$ Recently, we succeeded in the total synthesis of heliophenanthrone, ${ }^{4}$ a tricyclic ring system, prompting us to extend this synthetic method to the steroid framework. Herein we report on the synthesis of angular fused tetracyclic rings, including 3-desoxyequilenin (1), a steroid isolated from the urine of pregnant mares in 1945 by Prelog and Fuehrer and possessing a moderate estrogenic activity. ${ }^{5}$

Results and Discussion

The retrosynthetic analysis for the synthesis of 3-desoxyequilenin (1) is depicted in Scheme 1. In the key transformation of this synthesis-from $\mathbf{3}$ to $\mathbf{2}$-rings B and C should be built
(1) For reviews on gold catalysis, see: (a) Dyker, G. Angew. Chem. 2000, 112, 4407-4409; Angew. Chem., Int. Ed. 2000, 39, 4237-4239. (b) Hashmi, A. S. K. Gold Bull. 2004, 37, 51-65. (c) Hoffmann-Röder, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387-391.
(2) Dyker, G.; Stirner, W.; Henkel, G.; Köckerling, M. Tetrahedron Lett. 1999, 40, 7457-7458.
up in a single preparative step. Ring D was planned to be introduced via cyclopentanone 5, substituted with an ethynyl and a propargyl group. Ring A is derived from bromobenzaldehyde 4. Since both diastereoisomers of $\mathbf{2}$ should lead to the natural product $\mathbf{1}$ in the final transformation, we decided to use a mixture of the diastereoisomers of 5 for the approach to racemic 3-desoxyequilenin (rac-1).

The bisalkyne coupling component 5 was efficiently synthesized in three steps from cyclopentadione 6 (Scheme 2). The C-alkylation with propargyl bromide proceeded smoothly in 80% yield, in accord with a known procedure. ${ }^{6}$ Trimethylsilyl acetylene was metalated with n - BuLi and classically added to one of the chemically equivalent keto groups to give $\mathbf{7}$ in 84%

[^0]
SCHEME 1. Retrosynthetic Analysis for the Synthesis of 3-Desoxyequilenin (1)

SCHEME 2. Preparation of Diyne $\mathbf{5}^{a}$

${ }^{a}$ Conditions: (a) propargyl bromide, $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 80 \%$; (b) TMS acetylene, $n-\mathrm{BuLi},-70{ }^{\circ} \mathrm{C}, \mathrm{THF}, 84 \%$; (c) (AcO) $)_{2} \mathrm{O}$, TEA, DMAP, rt, 85%.
SCHEME 3. Synthesis of Racemic 3-Desoxyequilenin (rac-1) ${ }^{a}$

${ }^{a}$ Conditions: (a) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2 \mathrm{~mol} \%)$, $\mathrm{CuI}(2 \mathrm{~mol} \%)$, TEA, $80{ }^{\circ} \mathrm{C}, 88 \%$; (b) $\mathrm{KF}, \mathrm{THF}, \mathrm{MeOH}, \mathrm{rt}, 92 \%$; (c) $\mathrm{AuCl}_{3}(3 \mathrm{~mol} \%), \mathrm{MeCN}, 80{ }^{\circ} \mathrm{C}$, rac-trans-2 (62\%), rac-cis-8 (7\%), 9 (22%); (d) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{THF}, \mathrm{MeOH}, \mathrm{rt}, 86 \%$; (e) $\mathrm{KHSO}_{4},(\mathrm{AcO})_{2} \mathrm{O}, 100{ }^{\circ} \mathrm{C}, 71 \%$; (f) H_{2} (2.5 bar), $\mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc}, ~ r a c-1$ $(57 \%), \mathbf{1 0}(36 \%)$ (diastereomeric mixture of cis- $\mathbf{1 0}$ and trans-10).
yield and a diastereomeric ratio of nearly 1:1 (determined by ${ }^{1} \mathrm{H}$ NMR). ${ }^{7}$ Subsequent acetylation of the alcohol functionality gave the desired coupling component 5 in 85% yield. ${ }^{8}$

Compound 5 was coupled with aryl bromide 4 in a Sonogashira reaction, ${ }^{9}$ followed by the cleavage of the TMS group with KF in $\mathrm{THF} /$ methanol, resulting in an overall yield of 81%
(7) Chen, M.-J.; Lo, C.-Y.; Chin, C.-C.; Liu, R.-S. J. Org. Chem. 2000, 65, 6362-6367.
(8) (a) Fuhshuku, K.; Tomita, M.; Sugai, T. Adv. Synth. Catal. 2003, 345, 766-774. (b) Hoefle, G.; Steglich, W.; Vorbrüggen, H. Angew. Chem. 1978, 90, 602-615; Angew. Chem., Int. Ed. 1978, 17, 569-583.
(9) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 50, 4467-4470. (b) Roesch, K. R.; Larock, R. C. J. Org. Chem. 2002, 67, 86-94.
of $\mathbf{3}$ (ratio of diastereoisomers 1:1.57). ${ }^{10}$ For the gold chloride catalyzed cyclization of the functionalized aldehyde $\mathbf{3}$, we anticipated the formation of a mixture of the two diastereoisomers of tetracycle 2. Surprisingly, cis-2 was completely missing in the crude product according to ${ }^{1} \mathrm{H}$ NMR analysis. Instead, the trans-annulated isomer rac-trans-2 was isolated as the main product, accompanied by rac-cis-8-the hydrolization product of cis-2-and by the elimination product $\mathbf{9}$, reflecting subtle steric or stereoelectronic influences on the reactivity of cis- and trans-2. The trans-configuration of the latter isomer was crucial for the identification of the subsequent products and therefore
(10) Saito, T.; Morimoto, M.; Akiyama, C.; Matsumoto, T.; Suzuki, K. J. Am. Chem. Soc. 1995, 117, 10757-10758.

SCHEME 4. Synthesis of rac-cis-15 and rac-trans- 15^{a}

rac-trans-15
16
${ }^{a}$ Conditions: (a) $\mathrm{KO} t \mathrm{Bu}, \mathrm{HO} t \mathrm{Bu}$, propargyl bromide, rt, 86%; (b) $\mathrm{LiI} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 2,4,6$-trimethylpyridine, $180{ }^{\circ} \mathrm{C}, 54 \%$; (c) TMS acetylene, n - $\mathrm{BuLi},-70{ }^{\circ} \mathrm{C}$, MeI, THF, rt, 62%; (d) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2 \mathrm{~mol} \%)$, $\mathrm{CuI}(2 \mathrm{~mol} \%)$, TEA, $80^{\circ} \mathrm{C}, 85 \%$ (cis), 88% (trans); (e) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{THF}, \mathrm{MeOH}, \mathrm{rt}, 91 \%$; (f) $\mathrm{AuCl} \mathrm{l}_{3}(5 \mathrm{~mol}$ $\%$), $\mathrm{MeCN}, 8{ }^{\circ} \mathrm{C}$, transformation of rac-cis-14 leads to rac-cis- $\mathbf{1 5}$ (27%), $\mathbf{1 6}$ (13%), $\mathbf{1 7}$ (15%), rac-trans- $\mathbf{1 4}$ leads to rac-trans- $\mathbf{1 5}$ (52%), $\mathbf{1 6}$ (10%), $\mathbf{1 7}$ $(17 \%) ;(\mathrm{g}) \mathrm{AuCl}_{3}(5 \mathrm{~mol} \%)$, toluene, $120^{\circ} \mathrm{C}$ (in a sealed tube), transformation of rac-cis- $\mathbf{1 4}$ generates rac-cis-15 (77\%), $\mathbf{1 6}$ (0%), $\mathbf{1 7}$ (0%), transformation of rac-trans-14 generates rac-trans-15 (75\%), 16 (0%), 17 (0%).
was confirmed by a NOESY experiment due to the correlations observed between the methyl group and $\mathrm{H}-12$ as well as $\mathrm{H}-15$. In accord with this result, the correlation between the methyl group and the acetate functionality was missing.

Saponification of rac-trans-2 with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in THF/methanol gave rac-trans-8 in 86% yield, ${ }^{11}$ confirming the identity of rac-trans- $\mathbf{8}$ by comparison of the ${ }^{1} \mathrm{H}$ NMR spectra. The hydroxy groups of rac-trans- $\mathbf{8}$ and rac-cis- $\mathbf{8}$ were eliminated with KHSO_{4} in acetic anhydride as solvent to give the β, γ-unsaturated ketone 9. ${ }^{12}$ Hydrogenation of $\mathbf{9}$ in ethyl acetate over palladium-on-charcoal at 2.5 bar hydrogen pressure gave racemic 3-desoxyequilenin (rac-1) and a diastereomeric mixture of $\mathbf{1 0}$ in 57 and 36% yield, respectively. ${ }^{13}$

To demonstrate the generality of the annulation method, we tested the synthesis of chrysenone rac-cis- and rac-trans- $\mathbf{1 5}$ as another tetracyclic product according to Scheme 4. C-Alkylation of the cyclic β-ketoester 11 with propargyl bromide and subsequent hydrolytic decarboxylation according to standard procedures gave the cyclohexanone $\mathbf{1 2}$ in an overall yield of $46 \%,{ }^{14}$ whereas the direct propargylation of cyclohexanone proved to be unsuccessful in terms of synthetic utility. ${ }^{15}$ Preparation of the two diastereoisomers rac-cis- $\mathbf{1 3}$ and rac-trans-13 in a ratio of $1.76: 1$ was achieved with a one-pot procedure by addition of lithiated trimethylsilyl acetylene to the keto functionality and quenching with methyl iodide; ${ }^{7}$ the two diastereoisomers rac-cis-13 and rac-trans- $\mathbf{1 3}$ were separated by flash column chromatography in 62% overall yield. The Sonogashira coupling reaction with 2-bromobenzaldehyde (4) ${ }^{9}$ followed by cleavage of the TMS group with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in THF/ methanol provided rac-cis-14 in 77% and rac-trans-14 in 80% yield. ${ }^{16}$ Surprisingly, the gold-catalyzed domino process let to the formation of three products when carried out in acetonitrile at $80^{\circ} \mathrm{C}$; besides the expected annulation products rac-cis- $\mathbf{1 5}$ and rac-trans- $\mathbf{1 5}$ (with low to moderate yields of 27 and 52\%), phenolic compound $\mathbf{1 7}$ and the annulated fluorene $\mathbf{1 6}$ were identified as byproducts. ${ }^{17}$ Changing to toluene as solvent and increasing the reaction temperature to $120{ }^{\circ} \mathrm{C}$ completely suppresses formation of these byproducts; instead, the chryse-

[^1]nones rac-cis-15 and rac-trans-15 were isolated with satisfactory yields above 75%. The relative configurations of both were identified by NOE experiments with the methine proton. However, the remarkable formation of 16, which obviously involves a CO extrusion step, calls for a mechanistic interpretation (Scheme 5):

SCHEME 5. Proposed Mechanism for the Formation of 15 and 16

The double annulation process most probably proceeds through the benzopyrylium cation I, which results from the nucleophilic

SCHEME 6. Synthesis of 19, rac-cis-20, and 21^{a}

${ }^{a} \mathrm{AuCl}_{3}(5 \mathrm{~mol} \%), \mathrm{MeCN}, 80^{\circ} \mathrm{C}, 19$ (7\%), rac-cis-20 (47\%), 21 (4\%).
attack of the carbonyl oxygen at the alkyne, activated by the Lewis acidic gold salt. A subsequent intramolecular Huisgentype $[3+2]$ cycloaddition of the second alkyne followed by a rearrangement reaction leads to the aromatized final product 15, in analogy to the calculations of Straub. ${ }^{18}$ As a mechanistic pathway to the fluorene derivative 16, we suggest an intramolecular ring closure of the dipolar intermediate I to oxirane II with a gold-carbene complex functionality. ${ }^{19}$ A somewhat speculative rearrangement could lead to III, which should liberate the active catalyst under formation of the o-quinoid ketone IV. An intramolecular Diels-Alder reaction with the second alkyne moiety would lead to cycloadduct \mathbf{V}, which should undergo the thermodynamically favorable extrusion of carbon monoxide and the final elimination of methanol to the observed byproduct 16. To confirm the regioselectivity of the proposed mechanism, we synthesized model substrate rac-cis18, equipped with a diagnostic methyl group (Scheme 6). The result of the gold-catalyzed annulation reaction corresponds to the mechanistic Scheme 5 because the methyl group indeed ends up at the 2-position of the fluorene derivative 19, proven by two-dimensional NMR spectroscopy (HMBC correlation between the carbon of the methyl group at C-2 and $\mathrm{H}-1$ and $\mathrm{H}-3$ and by the absence of a cross signal between C-6 and H-11). The CO extrusion was confirmed with an indicator paper, which was soaked with an aqueous PdCl_{2} solution; its color turned from brown to black upon contact with the gas phase above the reaction mixture.

Conclusion

The total syntheses of rac-3-desoxyequilenin and of a chrysenone derivative were accomplished via a gold-catalyzed domino process, which achieves a high degree of complexity in just one preparative step. This result demonstrates the usefulness of this method for the construction of tetracyclic ring

[^2]systems as important structural framework of natural products, such as steroids.

Experimental Section

trans-14-Acetoxy-13-methyl-13,14,15,16-tetrahydro-12H-cyclopenta [a]phenanthrene-11,17-dione (rac-trans-2), cis-14-Hy-droxy-13-methyl-13,14,15,16-tetrahydro-12H-cyclopenta[a]-phenanthrene-11,17-dione (rac-cis-8), and 13-Methyl-13,16-dihydro-12H-cyclopenta $[a]$ phenanthrene-11,17-dione (9). In a screw-capped flask, $385 \mathrm{mg}(1.20 \mathrm{mmol})$ of $\mathbf{3}$ and $11 \mathrm{mg}(36 \mu \mathrm{~mol})$ of AuCl_{3} were dissolved in 50 mL of acetonitrile. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 h and, after cooling to room temperature, filtered through a short pad of silica (eluent: ethyl acetate). After evaporation of the solvents, the residue was fractionated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate 3:1); 1st fraction ($R_{f}=0.33$): $70 \mathrm{mg}(22 \%)$ of $\mathbf{9}$ as colorless crystals (mp $109-111^{\circ} \mathrm{C}$); 2nd fraction ($R_{f}=0.19$): $240 \mathrm{mg}(62 \%)$ of rac-trans-2 as colorless crystals ($\mathrm{mp} 55^{\circ} \mathrm{C}$); 3rd fraction ($R_{f}=0.09$): $30 \mathrm{mg}(7 \%)$ of rac-cis-8 as colorless crystals ($\mathrm{mp} 170^{\circ} \mathrm{C}$). rac-trans-2: IR (KBr) $\tilde{v} 3056$ (w), 2976 (w), 2935 (w), 1745 (vs), 1680 (s), 1430 (m), 1369 (m), 1236 (s), 1143 (m), 1078 (w), 1029 (m), $830(\mathrm{~m}), 757(\mathrm{~m}), 672(\mathrm{w}) \mathrm{cm}^{-1}$; UV (acetonitrile) $\lambda_{\text {max }}(\log \epsilon)$ 316 (3.75), 308 (3.84), 234 (4.18) nm; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 1.24(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.65-$ $2.79(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 18.7, 21.6, 34.8, 35.2, 46.7, 53.4, 86.7, 123.0, 127.2, 127.3, 127.8, 128.2, 129.5, 129.8, 133.4, 135.5, 143.7, 169.9, 197.7, 215.3; MS (70 eV, EI) $m / z(\%)=322\left[\mathrm{M}^{+}\right]$ (100), 280 (36), 262 (55), 238 (67), 220 (63), 196 (29), 178 (24), 165 (24), 152 (16), 127 (13), 73 (19), 43 (66). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4}: \mathrm{C}, 74.52 ; \mathrm{H}, 5.63$. Found: C, $74.71 ; \mathrm{H}, 5.49$. rac-cis-8: IR (KBr) $\tilde{v} 3446$ (s), 2951 (w), 2919 (w), 1750 (vs), 1648 (vs), 1590 (m), 1434 (m), 1209 (m), 1021 (m), 770 (m) cm ${ }^{-1}$; UV (acetonitrile) $\lambda_{\max }(\log \epsilon) 318$ (3.78), 308 (3.80), 242 (4.27), 224(4.28) nm; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.97(\mathrm{~s}, 3 \mathrm{H}), 2.01$ (s , $1 \mathrm{H}), 2.59-2.76(\mathrm{~m}, 4 \mathrm{H}), 2.63(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=$ $18.3,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{td}, J=7.6,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.67(\mathrm{td}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 21.7, 29.8, 33.6, 42.4, 53.7, 79.5, 121.1, 126.7, 127.0, 127.4, 128.7, 129.5, 131.3, 134.5, 135.2, 142.7, 199.6, 216.0; MS (70 eV, EI) $m / z(\%)=280\left[\mathrm{M}^{+}\right](100), 262(7), 221$ (33), 207 (12), 197 (79), 178 (17), 165 (19), 152 (15), 127 (16). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 77.12; H, 5.75. Found: C, 77.41 ; H, 5.89. 9: IR (KBr) $\tilde{v} 3062$ (w), 2967 (w), 2928 (w), 1747 (vs), 1664 (vs), 1612 (m), 1590 (m), 1508 (m), 1428 (m), 1362 (m), 1213 (s), 1195 (m), 1149 (m), 1053 (m), 988 (m), 839 (m), 808 (s), 780 (m), $767(\mathrm{~m}) \mathrm{cm}^{-1}$; UV (acetonitrile) $\lambda_{\text {max }}(\log \epsilon) 327$ (3.69), 277
(4.22), 267 (4.25), 256 (4.26), 229 (4.25) nm; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}) \delta 1.32(\mathrm{~s}, 3 \mathrm{H}), 2.83$ and $2.95(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.21 and $3.42(\mathrm{dd}, J=23.7,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53(\mathrm{td}, J=7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 9.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 21.6,42.7,47.5,52.6,121.5,121.8,124.7,126.9,127.3,128.6$, 129.6, 131.2, 134.1, 135.4, 136.2, 144.6, 198.4, 216.5; MS (70 eV, EI) $m / z(\%)=262\left[\mathrm{M}^{+}\right](100), 234$ (74), 219 (34), 206 (36), 191 (34), 178 (13), 165 (24), 117 (9), 101 (7), 89 (10). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 82.42; H, 5.38. Found: C, 82.43; H, 5.77.
trans-14-Hydroxy-13-methyl-13,14,15,16-tetrahydro-12H-cyclopenta $[a]$ phenanthrene-11,17-dione (rac-trans-8). A solution of $104 \mathrm{mg}(0.75 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 10 mL of methanol was added to $240 \mathrm{mg}(0.75 \mathrm{mmol})$ of rac-trans- 2 in 10 mL of THF, and the mixture was stirred for 16 h . Fifteen milliliters of aqueous 1 N $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the water layer was extracted three times with 20 mL of MTBE. The combined organic extract was dried over sodium sulfate. Evaporation of the solvents and flash chromatography of the residue $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate $2: 1$; $R_{f}=0.26$) resulted in 180 mg (86%) of rac-trans-8 as colorless crystals (mp $212{ }^{\circ} \mathrm{C}$): IR (KBr) $\tilde{v} 3465$ (s), 2977 (w), 2927 (w), 1727 (vs), 1654 (vs), 1591 (m), 1508 (m), 1362 (m), 1330 (m), 1218 (s), 1183 (m), 1067 (s), 971 (m), 828 (m), 759 (m) cm ${ }^{-1}$; UV (acetonitrile) $\lambda_{\max }(\log \epsilon) 317$ (3.76), 308 (3.82), 244 (4.21), $227(4.23) \mathrm{nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.26(\mathrm{~s}, 3 \mathrm{H}), 2.11$ (s, 1H), 2.44-2.81 (m, 4H), 2.56 (d, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.94 (d, J $=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{td}, J=7.8$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.85 ("d", 1H), 7.89 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.15 (d, J $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.34(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 14.6,35.4,35.5,47.0,57.2,80.0,123.4,125.0,127.0$, 127.1, 128.5, 129.7, 130.3, 133.6, 136.2, 147.0, 196.6, 216.5; MS $(70 \mathrm{eV}, \mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=280\left[\mathrm{M}^{+}\right](100), 262(6), 224$ (87), 209 (16), 197 (34), 181 (17), 165 (17), 152 (17), 127 (25). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 77.12; H, 5.75. Found: C, 77.37; H, 5.70.

Elimination Reaction of $\mathbf{8}$ to 9 . Ninety milligrams (0.32 mmol) of a mixture of rac-trans-8 and rac-cis-8 was dissolved in 4 mL of acetic anhydride; $109 \mathrm{mg}(0.80 \mathrm{mmol})$ of KHSO_{4} was added and the mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 1 h . Ten milliliters of 5% aqueous KHCO_{3} was added, and the water layer was extracted with MTBE. The combined organic extract was washed with brine and dried over sodium sulfate. Evaporation of the solvents and flash chromatography of the residue $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate $3: 1 ; R_{f}=0.35$) gave $60 \mathrm{mg}(71 \%)$ of $\mathbf{9}$ as colorless crystals (mp $109-111^{\circ} \mathrm{C}$).
rac-3-Desoxyequilenin (rac-1) and 13-Methyl-13,14,15,16-tetrahydro-12H-cyclopenta $[a]$ phenanthrene-11,17-dione (10). Fifty-five milligrams (0.21 mmol) of $\mathbf{9}$ was hydrogenated within 2.5 h at 2.5 bar of hydrogen pressure in ethyl acetate (10 mL) using 50 mg of 10% palladium-on-charcoal as catalyst. The mixture was filtrated, the solvent evaporated, and the residue was fractionated by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate 3:1); 1st fraction $\left(R_{f}=0.52\right): 20 \mathrm{mg}(36 \%)$ of $\mathbf{1 0}$ in the ratio $1: 1.58$ as colorless crystals ($\mathrm{mp} 146-149{ }^{\circ} \mathrm{C}$); 2nd fraction ($R_{f}=0.20$): 30 mg (57%) of rac- $\mathbf{1}$ as colorless crystals (mp $180^{\circ} \mathrm{C}$). rac-1: IR (KBr) $\tilde{v} 3046$ (w), 2930 (s), 2865 (m), 1735 (vs), 1509 (m), 1459 (m), 1428 (m), 1369 (m), 1349 (m), 1287 (m), 1251 (m), 1063 (m), 1033 (m), 1014 (m), 820 (s), 764 (s) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}) \delta 0.82(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~m}$, $1 \mathrm{H}), 2.42(\mathrm{dd}, J=18.7,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=$ $19.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=12.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.37(\mathrm{~m}$, $2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{td}$, $J=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}, 100\right.$ MHz) $\delta 13.4,22.0,24.1,29.3,36.7,47.1,47.7,123.4,123.9,125.2$, 126.3, 126.8, 128.8, 131.0, 132.1, 132.6, 134.6, 219.9; MS (70 eV, EI) $m / z(\%)=250\left[\mathrm{M}^{+}\right]$(100), 235 (4), 207 (20), 193 (37), 178 (27), 165 (25), 113 (12), 98 (17), 89 (16), 76 (7). 10: IR (KBr) \tilde{v} 3021 (w), 2970 (w), 1745 (vs), 1662 (vs), 1594 (m), 1512 (m),-

1335 (w), 1208 (m), 1132 (w), 1111 (w), 1038 (w), 1010 (w), 958 (w), $840(\mathrm{~m}), 822(\mathrm{~m}), 764(\mathrm{~m}) \mathrm{cm}^{-1}$; UV (acetonitrile) $\lambda_{\text {max }}(\log$ є) 317 (3.83), 308 (3.82), 246 (4.31), 220 (4.44) nm; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ double set of signals because of diastereoisomers (ratio 3:2) $\delta 0.86$ and $1.29(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.77$ $(\mathrm{m}, 4 \mathrm{H}), 2.92$ and $2.94(\mathrm{~d}, J=13.8,18.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-3.44(\mathrm{~m}$, 1 H), 7.38 and 7.41 (d, $J=8.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.53 ("t", 1 H), 7.67 ("t", 1 H), 7.83 and $7.87(\mathrm{~d}, J=7.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03$ and $8.09(\mathrm{~d}$, $J=8.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.30$ and $9.31(\mathrm{~d}, J=8.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 15.3,20.4,22.1,28.5,35.9,37.7$, 43.2, 49.0, 46.4, 48.4, 49.0, 50.4, 123.1, 126.7, 125.8, 127.0, 126.3, 126.5, 126.4, 126.6, 128.5, 128.7, 129.4, 129.5, 130.9, 131.4, 133.1, 133.4, 135.4, 135.4, 143.3, 145.6, 197.6, 198.7, 217.3, 218.0; MS $(70 \mathrm{eV}, \mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)=264\left[\mathrm{M}^{+}\right](100), 236(10), 221(10), 208$ (48), 196 (40), 178 (23), 165 (37), 152 (13), 76 (5).
trans-10a-Methoxy-6a,7,8,9,10,10a-hexahydro-6H-chrysen-5one (rac-trans-15), 8,9,10,11-Tetrahydro-7H-benzo [a]fluorene (16), and 7,8,9,10-Tetrahydrochrysen-5-ol (17). In a screw-capped flask, $135 \mathrm{mg}(0.48 \mathrm{mmol})$ of rac-trans- 14 and $7.0 \mathrm{mg}(23 \mu \mathrm{~mol})$ of AuCl_{3} were dissolved in 20 mL of acetonitrile. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 h and, after cooling to room temperature, filtered through a short pad of silica (eluent: ethyl acetate). After evaporation of the solvents, the residue was fractionated by flash chromatography (SiO_{2}, petroleum ether/ethyl acetate 20:1); 1st fraction ($R_{f}=0.73$): $11 \mathrm{mg}(10 \%)$ of $\mathbf{1 6}$ as colorless crystals (mp $\left.81^{\circ} \mathrm{C}\right) ; 2 \mathrm{nd}$ fraction $\left(R_{f}=0.30\right): 70 \mathrm{mg}(52 \%)$ of rac-trans- 15 as colorless crystals ($\mathrm{mp} 105-107^{\circ} \mathrm{C}$); 3rd fraction ($R_{f}=0.13$): 20 $\mathrm{mg}(17 \%)$ of $\mathbf{1 7}$ as colorless crystals ($\mathrm{mp} 189-190^{\circ} \mathrm{C}$). rac-trans15: IR (KBr) $\tilde{v} 2929$ (s), 2855 (s), 2823 (m), 1668 (vs), 1590 (m), 1460 (m), 1448 (m), 1367 (m), 1341 (m), 1231 (s), 1220 (s), 1199 (m), 1115 (s), 1071 (s), 1059 (s), 927 (m), 838 (s), 828 (s), 812 (s), 753 (vs) cm^{-1}; UV (acetonitrile) $\lambda_{\text {max }}(\log \epsilon) 312$ (3.91), 308 (3.98), 240 (4.52), $222(4.57) \mathrm{nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $1.34(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.84(\mathrm{~m}, 5 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H})$, $2.66(\mathrm{dd}, J=18.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=18.1,10.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.85(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 7.53(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-$ $7.64(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $9.04(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 21.5, 25.5, 28.7, 29.2, 41.4, 42.5, 49.9, 73.8, 122.8, 126.6, 126.8, 128.1, 128.6, 129.6, 130.8, 132.5, 133.6, 145.8, 201.0; MS (70 eV, EI) $m / z(\%)=280\left[\mathrm{M}^{+}\right](100), 265(15), 249(67), 237(14), 221$ (33), 207 (20), 181 (79), 165 (25), 152 (20), 141 (12). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 81.40; H, 7.19. Found: C, 81.06; H, 7.25. 16: IR (KBr) $\tilde{v} 3051$ (m), 2929 (s), 2852 (m), 2826 (m), 1615 (w), 1513 (w), 1435 (m), 1397 (m), 1257 (m), 1209 (w), 1139 (m), 1022 (w), 943 (w), 820 (vs), 810 (vs), 744 (vs) cm^{-1}; UV (acetonitrile) $\lambda_{\text {max }}(\log \epsilon) 316$ (3.69), 304 (3.89), 296 (3.80), 248 (4.17), 218 (4.14) nm; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.85(\mathrm{~m}, 4 \mathrm{H}), 2.52(\mathrm{~s}$, $4 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 7.34(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H})$, $7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 22.6,22.9,23.5$, 26.1, 39.6, 117.9, 123.5, 123.9, 126.0, 127.0, 129.0, 130.2, 131.4, 136.6, 138.7, 141.0, 143.7; MS (70 eV, EI) m / z (\%) $220\left[\mathrm{M}^{+}\right]$(100), 202 (6), 192 (51), 178 (15), 165 (12), 96 (5). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16}$: C, 92.68; H, 7.32. Found: C, 92.30; H, 7.41. 17: IR (KBr) च 3520 (vs), 2929 (s), 2855 (m), 1621 (w), 1422 (w), 1391 (m), 1307 (m), 1221 (m), 1188 (m), 1111 (m), 850 (m), 807 (s$), 755$ (s) cm^{-1}; UV (acetonitrile) $\lambda_{\text {max }}(\log \epsilon) 362$ (3.62), 345 (3.53), 329 (3.30), 308 (3.93), 301 (3.94), 276 (4.28), 245 (4.29) nm; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.87(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}), 3.11(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 7.56$ (td, $J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}$, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 9.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 22.9,23.8,26.3,30.4,114.5,118.2,122.1,125.4,125.6$, 126.5, 128.2, 128.6, 128.6, 130.9, 132.0, 133.3, 135.9, 152.2; MS $\left(70 \mathrm{eV}\right.$, EI) $\mathrm{m} / \mathrm{z}(\%)=248\left[\mathrm{M}^{+}\right](100), 231$ (5), $220(26), 191$ (10), 165 (7), 124 (7), 101 (12).
cis-10a-Methoxy-6a,7,8,9,10,10a-hexahydro-6H-chrysen-5one (rac-cis-15), 8,9,10,11-Tetrahydro-7H-benzo[a]fluorene (16), and $7,8,9,10$-Tetrahydrochrysen-5-ol (17). In a screw-capped flask, $135 \mathrm{mg}(0.48 \mathrm{mmol})$ of rac-cis- 14 and $7.0 \mathrm{mg}(23 \mu \mathrm{~mol})$ of AuCl_{3} were dissolved in 20 mL of acetonitrile. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 h and, after cooling to room temperature, filtered through a short pad of silica (eluent: ethyl acetate). After evaporation of the solvents, the residue was fractionated by flash chromatography (SiO_{2}, petroleum ether/ethyl acetate 20:1); 1st fraction ($R_{f}=0.73$): $14 \mathrm{mg}(13 \%)$ of $\mathbf{1 6}$ as colorless crystals (mp $81{ }^{\circ} \mathrm{C}$); 2nd fraction ($R_{f}=0.23$): $37 \mathrm{mg}(27 \%)$ of rac-cis- 15 as colorless crystals (mp $112{ }^{\circ} \mathrm{C}$); 3rd fraction ($R_{f}=0.13$): 18 mg (15%) of $\mathbf{1 7}$ as colorless crystals (mp $189-190^{\circ} \mathrm{C}$). rac-cis- $\mathbf{1 5}$: IR (KBr) $\tilde{v} 2930$ (s), 2858 (s), 2823 (m), 1665 (vs), 1616 (m), $1502(\mathrm{~m}), 1446$ (m), 1429 (m), 1357 (m), 1343 (m), 1267 (m), 1243 (m), 1223 (m), 1214 (m), 1181 (m), 1166 (m), 1098 (m), 1079 (s), 1066 (s), 839 (s), 799 (m), 757 (s) cm ${ }^{-1}$; UV (acetonitrile) $\lambda_{\max }(\log \epsilon) 312(3.37), 308$ (3.41), 245 (3.88), 215 (4.15) nm; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.45-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.96(\mathrm{~m}$, $4 \mathrm{H}), 2.75(\mathrm{dd}, J=15.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H})$,
$3.07(\mathrm{dd}, J=15.6,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64$ (td, $J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 19.9, 21.7, 26.6, 34.8, 35.5, 43.7, 50.0, 78.0, 123.7, 126.6, 127.0, 128.0, 128.3, 128.9, 131.0, 133.3, 134.9, 149.9, 200.6; MS (70 eV, EI) $m / z(\%)=280\left[\mathrm{M}^{+}\right]$ (100), 265 (12), 249 (52), 237 (27), 223 (38), 209 (25), 181 (59), 165 (29), 152 (24), 127 (13). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 81.40 ; H, 7.19. Found: C, 81.06; H, 7.25.

Acknowledgment. We gratefully acknowledge financial support from Fonds der Chemischen Industrie and of the Deutsche Forschungsgemeinschaft (DFG-project DY 12/7-2).

Supporting Information Available: Experimental details of the syntheses of 3, 5, 7, 13, 14, 18-21 as well as additional characterization data and spectra of all products. This material is available free of charge via Internet at http://pubs.acs.org.

JO060606R

[^0]: (3) (a) Antoniotti, S.; Genin, E.; Michelet, V.; Genêt, J. P. J. Am. Chem. Soc. 2005, 127, 9976-9977. (b) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2005, 127, 6962-6963. (c) Yang, C.-G.; He, C. J. Am. Chem. Soc. 2005, 127, 6966-6977. (d) Zhu, J.; Grigoriadis, N. P.; Lee, J. P.; Porco, J. A., Jr. J. Am. Chem. Soc. 2005, 127, 9342-9343. (e) Markham, J. P.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 9708-9709. (f) Asao, N.; Sato, K.; Menggenbateer; Yamamoto, Y. J. Org. Chem. 2005, 70, 36823685. (g) Sato, K.; Asao, N.; Yamamoto, Y. J. Org. Chem. 2005, 70, 89778981. (h) Kim, N.; Kim, Y.; Park, W.; Sung, D.; Gupta, A. K.; Oh, C. H. Org. Lett. 2005, 7, 5289-5291. (i) Kusawa, H.; Miyashita, Y.; Takaya, J.; Iwasawa, N. Org. Lett. 2006, 8, 289-292. (j) Lo, C. Y.; Kumar, M. P.; Chang, H.-K.; Lush, S.-F.; Liu, R.-S. J. Org. Chem. 2005, 70, 1048210487. (k) Soriano, E.; Marco-Contelles, J. J. Org. Chem. 2005, 70, 93459353. (1) Fuerstner, A.; Davies, P. W. J. Am. Chem. Soc. 2005, 127, 1502415025. (m) Nakamura, I.; Mizushima, Y.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 15022-15023. (n) Nevado, C.; Echavarren, A. M. Chem.Eur. J. 2005, 11, 3155-3164. (o) Muñoz, M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Organometallics 2005, 24, 1293-1300. (p) Bajracharya, G. B.; Nakamura, I.; Yamamoto, Y. J. Org. Chem. 2005, 70, 892897. (q) Soriano, E.; Marco-Contelles, J. Chem.-Eur. J. 2005, 11, 521533.
 (4) Dyker, G.; Hildebrandt, D. J. Org. Chem. 2005, 70, 6093-6096.
 (5) Prelog, V.; Fuehrer, J. Helv. Chim. Acta 1945, 28, 583-590.
 (6) Brooks, D. W.; Mazdiyasni, H.; Grothaus, P. G. J. Org. Chem. 1987, 52, 3223-3232.

[^1]: (11) Plattner, J. J.; Gless, R. D.; Rapoport, H. J. Am. Chem. Soc. 1972, 94, 8613-8615.
 (12) St. André, A. F.; MacPhillamy, H. B.; Nelson, J. A.; Shabica, A. C.; Scholz, C. R. J. Am. Chem. Soc. 1952, 74, 5506-5510.

[^2]: (13) (a) Marker, R. E.; Rohrmann, E. J. Am. Chem. Soc. 1939, 61, 33143317. (b) Johnson, W. S.; Petersen, J. W.; Gutsche, C. D. J. Am. Chem. Soc. 1947, 69, 2942-2955.
 (14) Magatti, C. V.; Kaminski, J. J.; Rothberg, I. J. Org. Chem. 1991, 56, 3102-3108.
 (15) Miller, R. B. Synth. Commun. 1972, 2, 267-272.
 (16) Scott, L. T.; Cooney, M. J.; Johnels, D. J. Am. Chem. Soc. 1990, 112, 4054-4055.
 (17) Frenton, S. W.; Arnold, R. T.; Fritz, H. E. J. Am. Chem. Soc. 1955, 77, 5983-5986.
 (18) Straub, B. F. Chem. Commun. 2004, 1726-1728.
 (19) (a) Padwa, A.; Hornbuckle, S. F. Chem. Rev. 1991, 91, 263-309. (b) Lu, C.-D.; Chen, Z.-Y.; Liu, H.; Hu, W.-H.; Mi, A.-Q. Org. Lett. 2004, 6, 3071-3074.

